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A model is presented for uniaxial-stress-induced alterations in the intrinsically strain-
broadened line shapes for magnetic-resonance absorption within a non-Kramers doublet for

the point-group symmetries Ds;, Cs,, and Oy.

(The term doublet is used here to denote the

|AM | =2 transition within a ground triplet.) The uniaxial stress is introduced as boundary
conditions in the model for the intrinsically strain-broadened line shapes for non-Kramers
doublets given previously. The effects of uniaxial stress are considered for the EPR where

the local site symmetry is Oy, and Dg;.

stress are considered for the paraelectric resonance absorption.

For the local symmetry Cs,, the effects of uniaxial

The model provides a

means for evaluating the strength of the spin-lattice coupling from uniaxial-stress experiments,
independent of the concentration of the paramagnetic impurity ions.

I. INTRODUCTION

Since the initial work done by Watkins and Feher,!
much interest has been devoted to the determination
of the parameters for the spin-lattice interaction for
paramagnetic impurities in diamagnetic host lattices
by introducing local crystal field perturbations using
uniaxial stress. Feher’s analysis? accounts reason-
ably well for first-order spectral shifts in the mag-
netic-resonance absorption for the Kramers ions
Mn®* and Fe®* in MgO.

When the lowest-order nonzero contribution of

local crystal field perturbations is second order, as
it is for transitions within a non-Kramers doublet, 3
the spectral effect of uniaxial stress is quite differ-
ent. Since the crystal field gives no first-order
contributions to transitions within the doublet, the
effect on the shape of the resonance line must be ex-
plicitly considered. In this paper we give a model
for the effect of uniaxial stress on the shapes of in-
trinsically strain-broadened magnetic-resonance
line shapes for transitions within a non-Kramers
doublet. 3* The model is given for the EPR for the
local site symmetries O, and D,;. The case of C,,
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without inversion symmetry is treated for the para-
electric resonance (PER), since the electric dipole
transitions occur in first order, whereas the cor-
responding magnetic quadrupole transitions occur in
second order. * In each of the cases of local site sym-
metry, the spin-lattice coupling coefficients are
treated as adjustable parameters, and thus must be
determined from a comparison of the model with the
appropriate uniaxial-stress experiments. The
model thus gives a means for evaluating the spin-
lattice parameters for non-Kramers ions indepen-
dent of the concentration of the paramagnetic im-
purity ion.

II. THEORY

We introduce uniaxial stress as boundary condi-
tions in the model for the intrinsically strain-broad-
ened line shapes presented earlier. * The absorption
intensity is therefore that given in Ref. 5, i.e.,

I(E)= f_: |<i| Byt | £)] 2G(E = ENT; pile;) dey

i=1,...,6. 1)

Here G(E) is the homogeneous distribution, the
width of which is determined by the lifetime broad-
ening and E is the energy of separation between the
states of the doublet. The first term in the integral
in (1) is the square of the matrix element of the rf
field which couples the states of the doublet, and the
pi(e;) are the probability distributions in the local
strain amplitudes e¢;. The term E’ is the correction
in the transition energy caused by the local crystal
field perturbations, i.e., E’'=E’(ey, ..., e5). Fol-
lowing the procedure of Ref. 5, we assume that the
local strain amplitudes follow a random distribution
in the crystal lattice, so we take the probability dis-
tributions p,(e;) as Gaussian. The introduction of
uniaxial stress occurs as a boundary condition with
regard to the probability distributions. These dis-
tributions are then given by

pile;)= (;/m'/2) expl - 2f (e; - €))7, (2

where e is the component of the local strain e; in-
duced by the application of uniaxial stress.

A. Site Symmetry D, and Cy, : Magnetic Quadrupole and
Phonon-Induced Transitions

Inthe absence of hyperfine interaction the magnetic-
resonance experiments can be interpreted on the
basis of an effective spin-1 formalism. *® The in-
homogeneous strain broadening of the line shape de-
pends upon the crystal field perturbation term 3, in
the spin Hamiltonian, ®

Hp=S-T. 8, @)

where the elements of the tensor 7 are linearly pro-
portional to the local strain components, *° and the
coefficients are the appropriate spin-lattice coupling
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parameters.? From the eigenvalues of the Hamil-
tonian for the spin-1 formalism, the resonance fre-
quency v is given by the expression

hv=2g,8H,+8A% v, , (4)

to second order. Here, H, is the axial component
of the magnetic field, Ay, is the unperturbed Zeeman
splitting, and A is a distribution in the strain am-
plitudes which mixes only the states of the doublet
within the triplet manifold defined by the Hamilto-
nian, % i.e.,

A= [(11y = 7o) =26 7y5) . (5)

As was done previously, 5 (5) can be written in the
form

A=3(3 1o—1iTg), (6)
where

To=Ti1 = T22= (Gyy = G1a) (€1 —€3) + 2Gyy 4 o
and

Te=T12=G1g €5+ 3 (Giy ~Giz) €g . (8)

Here, the G;; are the spin-lattice coupling coeffici-
ents and the e, are the strain amplitudes in the
Voigt” notation. From (7) and (8) it is seen that To
and 7¢ are completely independent. It has been
shown that (1) may be reduced from an integral over
a six-dimensional volume defined by the six inde-
pendent strain components to one over a two-dimen-
sional volume defined by 7, and 74.° Using (2), the
probability distributions in 7, and 74 from Egs. (16)
and (17) of Ref. 5 become

Po(To) = (70/-7,)1/ 2 exP[— Yo ('To - Tg)z] (9)
and
Pg(7e) = (7/m)" ® expl = 75 (14 = 7)°], (10)

respectively. Here, 7 and 7§ correspond to the
local strains induced by applied stress, i.e., if we
let

a1=Gyy, a3=Gy =Gy, (11)
we have

To=a, (ef - ed) +2a; e? (12)
and

Te=med+3 ay ef . (13)

We also have in this case the equivalence relation
between the distribution parameters® y, and 7, i.e.,

(14)

We take the homogeneous distribution G(E) as a
Gaussian, °

G(E - E') = (o/7'/?) exp{- o®[E - a4 72+ 12)]?},
(15)

Ye=470=7 .
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fect.® In a region of a microwave cavity where
H, =0, where H is the magnetic field component
of the radiation field, the square of the matrix ele-

and note that the square of the matrix element for
the rf field for EPR is to second order, °

; 2_ 4,282 0212 2
[(z[ﬁ(i,i [f>| =4 (B) A% (16) ment coupling the states is®?®
Here, H,(¢) is the z component of the rf magnetic . 2_82(5) RA(1 — 202 A2
field and |<ZIJ(’~M 1) (&) R¥( a®A%) (27)

through second-order terms in the crystal field per-
a=2/hv, an turbation. Here R is the spin-electric-field cou-
pling, 5 a is given by (17), and A is the distribution
in the local strain amplitudes given by (6)-(8). The
factor & (¢) in (27) is the component of the electric

rf field normal to the symmetry axis.

yp2 L g2p2 (2T [w We assume that there are no large stationary
HE)= (4 5vo/n°!%) e"Toe” "F [ [Tarao electric fields present. Thus, the stationary effec-
tive spin Hamiltonian is the same as for the previous
case and the resonance frequency is given by (4).

We again invoke the uniaxial-stress boundary condi-
tions given in (9) and (10) and use (15) and (27) in (1)

is the unperturbed Zeeman splitting factor and A is
given by (6). Using (9), (10), (15), and (16), and
using the computational scheme of Ref. 5, Eq. (1)
for the absorption becomes

x expl—art - cE+®(0)7] . (18)

Here, we have

02, (02
'Vtzr“'i (10)*+ (79)%, ) (19) to obtain the expression for the resonance absorption
a=o%0% c=y- 2a0%E, (20) as a function of applied stress. The procedure for
the calculation is the same as in the previous case,
and .
and the result is
® = 73 cosf + 270 sind. (21)
%%l ta

! ~(1/2)
ZJC oY -‘/‘rg e anz ﬂ
200

The constant X in (18) is I(E)=?(T7’2') e

=4 g2 B HAH)/(hwy)? . (22)

The integration over 6 results in the expression
EPR ABSORPTION DERIVATIVE FOR D,, LOCAL SITE SYMMETRY-UNIAXIAL STRESS

2 00
I(E)= (2 %y0/g/?) &0 =52 [ d #° T

X Jy (2y7y7) exp(—~ art - cv?), (23)

where Jy(Z) is the modified Bessel function in the
argument of order zero. If we make the substitution
Z = 2yyyr and integrate, (23) becomes

HE)=% v/(1%/? g a?) ¢7778 ¢=oE" g%/ ta

ARBITRARY UNITS

o n(ZA)'("'”/z
X2, =—1—— D(u ’ 24
"Z=>122(n-1) (n_1)| ( )-(n+1) ( ) A )
where ol J
4,4 M
x=a/(167%7g) (25) T e e N T T T
E 103%cm™
and
u=c/V2a . (26) FIG. 1. EPR-absorption derivative for Dy, site sym-
. metry for various values of the applied uniaxial strain.
The terms D(«)_, in the series in (24) are the para- The elastic constants used are those given by Huntington

(see Ref. 11) for CaF, and the spin-lattice coefficients

shown the derivative of the absorption distribution used are those given by McDonald [P. F. McDonald, Phys.
Rev. 177, 447 (1969)] for CaF,: U, The applied strain

obtained from (24) as a function of applied uniaxial is taken along the [111] with site axis along the [11T]
i rticular set of values for the intrinsic 1S taken along ihe Wilh site axis along the .
strain for a particula The amplitude of the first lobe of the derivative decreases

bolic cylinder functions of order ». In Fig. 1is

parameters and the spin-lattice coefficients. with increased applied strain, the values of which are
successively 0, 0.5, 1.5, 2.0, 2.5, and 3. 0 in units of
B. Site Symmetry C,: Electric Dipole Transitions 10-%, The homogeneous dilstribution parameter is taken
~-1_ -3 - " s 2. 4
In this case we consider that the paramagnetic- to be ™"~ 0, 667 X10™" em™" and the intrinsic strain dis~
. . . . . . tribution parameter is taken as ay” '=9,946 X107° cm™"',
ion-impurity site lacks inversion symmetry. Thus, The position of the “g value” for the absorption distribu-
the initial wave functions for the states of the dou- tions, i.e., the position of the peak of the undisplaced
blet have both even and odd parity components, so homogeneous distribution is indicated in the figure by the

that an electric field & can have a first-order ef- vertical line.



|

c ca/aa © )\2"
X(1-@® W ]+e Z;l oD Z ;D2

n=

x[l _2<CL;Z)2]D_M) (v?%‘) }, (28)
where
%= 8%(1)RE, (29)

As before, the terms D_,(u) in (28) are the parabolic
cylinder functions of order v, and the term &(z) is
the error function in the argument z. The derivative
of (28) is shown in Fig. 2 as a function of applied
uniaxial strain. For comparison, the values for

the intrinsic parameters and the spin-lattice coef-
ficients are the same as those used for Fig. 1.

C. Site Symmetry O, : Magnetic Quadrupole
and Phonon-Induced Transitions

The form of the spin Hamiltonian is again for the
spin-1 formalism but with octahedral symmetry
* with a perturbation to lower symmetry caused by
crystal defects. Thus, the spin Hamiltonian 3 is
of the form

%=B85.€.H+5-D-8. (30)

The last term is used to describe local crystal field
perturbations, and thus the elements of the coupling
tensor D can be written as a linear combination of
the local strain components. We consider only the
transitions within the non-Kramers doublet, i.e.,

PER ABSORPTION DERIVATIVE FOR Cyy LOCAL SITE SYMMETRY-UNIAXIAL STRESS

)
T

ARBITRARY UNITS
\
o

o U 2 3 4 .;s l6 7 8 9 10 [ 12

E 103 cm-!
FIG. 2. PER-absorption derivative for C;, site sym-

metry. The values used for the intrinsic parameters as
well as the direction of the applied strain and orientation
of the site axis are the same as those used for Fig. 1.
The amplitude of the first lobe of the derivative decreases
with increased applied strain, the values of which are
successively 0, 0.5, 1.5, 2.0, and 2.5 in units of 1074,
The position of the g value for the absorption distribu-
tions, i.e., the position of the peak of the undisplaced
homogeneous distribution, is indicated in the figure by
the vertical line.
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|AM¢1=2, and thus the resonance frequency is ob-
tained from the eigenvalues of (30) and is, ® to sec-
ond order,

hv=2gBH,+ (8/hvy) (A2+A'%), (31)

Here, hvy=2gBH, is the unperturbed Zeeman split-
ting and

A =3 (Dyy = Dy - 2i Dyy) (32)

and

A'=% (D3 —i Dy) . (33)

From (31), the correction E’ to the resonance
frequency which arises from the crystal field per-
turbations is given explicitly in terms of the local
strain components® :

E’= a' [a(eu —622)2+4b(e?2+ e§1+e§3) ] ) (34)
where
a'= (hVo)- 1’ a:g_ G%ly b=% Gi‘l; (35)

and G;; and G4, are the independent spin-lattice cou-
pling coefficients. The strain amplitudes in (34)
are referred to the crystal axes.

As pointed out in Ref. 5, the distribution func-
tions A and A’ couple the states of the doublet and
the singlet into the states of the doublet, respec-
tively. Therefore, the transition probability for
transitions within the doublet will be quite different
depending on whether the rf magnetic field is par-
allel or perpendicular to the dc magnetic field H,.
We assume that the local strains follow a random
distribution, and thus take the probability distribu-
tion for each strain amplitude to be Gaussian. The
uniaxial stress is again introduced as boundary
conditions in the model, so that the probability dis-
tributions take the form (2). For the same reasons
given in Ref. 5, we take the homogeneous distribu-
tion, G(E) in (1), as a 6 function. We treat the two
cases for the magnetic field orientation separately:

Case A: -ﬁ,., 1 -ﬁo .

The matrix element for the rf field is, to first
order in the spin functions,

l(zlJC,, |f> l 2=[2 64214 Hff/(h"o)zl (e§+ei) , (36)

where the strain amplitudes have been written in
the Voigt notation.” We let

k-l HE AN
a (2m°ab’)
and make the cubic approximation that the diagonal
intrinsic strain distributions are all equal with the
mean square value proportional to h;z; and like-
wise, the off-diagonal ones are equal with the mean
square value proportional to A;%, Then, using (2),

(34), and (36) in (1) and using the method for taking
the necessary integrals given in Ref. 5, we obtain

(37
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the expression for the absorption intensity

2 2 2 2 2 ’
I(E) =K e (y/2)ug e a3/ v rg e A3/ 4a'D)E
E 3/2
— 2 '
Xl’ dr (ET T> e-().1/20t a) T

X exp (—Az—— [7+27, (@'B)? (E -T)l/z]>

4a'd
, r \2
x cosh[?xl g (E) ] (38)
Here, we have written
ug=ed—ed, (39)
70=[(e)?+ (ed)?+ (ed)*]"/ 2, (40)

and a, b, and a’ are defined by (35). As before,
the e} are the local strain amplitudes induced by
applied stress.

In order to simplify the integral in (38), we con-
sider two cases for the applied stress.

1. Applied Uniaxial Stvess along the [100]

In this case,
79=0, u#0, (41)

and (38) simplifies to

EPR ABSORPTION DERIVATIVE FOR 0, LOCAL SITE SYMMETRY

AND HysLHo- UNIAXIAL STRESS IN [100]
T T T T T T T T

n
1

1

ARBITRARY UNITS

(o]

1 1 L L 1 L L 1 1
0O 02 04 06 08 0 12 14 16 .8 .2

E cm™!

FIG. 3. EPR-absorption derivative for O; site sym-
metry and ﬁrf 1 ﬁo with applied stress along the [100].
The elastic constants used are those given by Huntington
(see Ref. 11) for MgO, and the values for the spin-lattice
coefficients are taken from an average (see Ref. 12) of
those reported in the literature for MgO : Fe®*, The am-
plitude of the first lobe of the derivative decreases with
increased applied stress, the values of which are succes-
sively 0, 0.1, 0.2, 0.3, 0.4, and 0.5 in units of 103
kg/cm?. The diagonal and off-diagonal intrinsic strain
parameters A7! and A;! are each taken as 1.25x1074,

BOWDEN, MEYER, AND DONOHO 3

2,,. 2 2, .,
I(E)=K " /2% ¢~ %225 [B gr[(F — )% 2/71/2]

X e °" cosh(oT'/?), (42)
where
0=Xuy/Va'a (43)
and
1 (A2 A§>
LM 44
¢ 2a'<a 2b (44)

The integral in (42) is easily performed, and re-
sults in the expression

25,2 oy B S O
I(E)=K e~ /2145 o 03/ 1 E 3
( ¥ eny

x%}(% ____2n;1>E,,+21F1(__2n2+1 , n+3; —cE)].

(45)
The term B(zn, m) in (45) is the 8 function*® and
1F1(p, g; 2) is the degenerate hypergeometric series
in the argument. The derivative of the absorption
intensity obtained from (45) is shown in Fig. 3 for
various values of the applied stress. The elastic
constants used in this case are those given by
Huntington'! for MgO. For convenience, we set the
intrinsic strain parameters X, and X, equal to each
other and give an arbitrary value. The values for
the spin-lattice coefficients G,; and G, were taken
from an average'? of those reported in the literature
for MgO:Fe?",

2. Applied Uniaxial Stvess along the [110]

For this condition
75# 0 (46)

and (38) becomes

ug=0,

0% ne2 0% 2wa)E
I(E):Ke (h2/4)r0 e A/ 20'a)

E 182 o otz @
X | dT('_*ﬂTE _ T) e e ,
where
p=(3/2s7) 7, . (48)
The integration in (47) is carried out to yield
IE)=K e *8/97% & aZ/ 20 E
Xi _P_"B<l n+5)E<m4)/z
noo 1! 72
X, Fy (Z‘;—5, %6—,- CE) ) (49)

As in the previous case, B(n, m) and F,(p, g; z) are
the B function'® and the hypergeometric series in the
argument, respectively. The derivative of the ab-
corption intensity obtained from (49) is shown in
Fig. 4 for various values of the applied stress. The
elastic constants and intrinsic parameters are those
used in Fig, 3.
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EPR ABSORPTION DERIVATIVE FOR Op LOCAL SITE SYMMETRY
AND H,¢ L H_ - UNIAXIAL STRESS IN [110]
T T T

T T T T T T
10 -

8- -

ARBITRARY UNITS

04 o6 o6 i0 iz 6 8 20
E cm!

FIG. 4. EPR—absorptlon derivative for O, site sym-
metry and H,,J.Ho with applied stress along the [110].
The intrinsic parameters are the same as those used for
Fig. 3. The first lobe of the derivative increases with
applied stress, the values of which are the same as those
given for Fig. 3.

Case B: T wHo

In this case the matrix element for the rf field to
first order in the spin functions is

l<7"}cﬂ lf)‘ 2= 4 Hrfz/(hvo)a [a(el —ep) 2+ es]
(50)
We let /s e .
2 Hy M X (51)

n= o Tabe

and proceed as in case A. Then for the applied uni-
axial stress along the [110], the conditions for the
local induced strains are given by (46), and the ex-
pression for the absorption is

2 2 2 .
I(E)=%‘n e g/ Hry e-().1/2a a) E

1/2
xfoE dr /2 (E=1)"/2 ¢° !

T T
ep

x[1+57/(B=-7)] . (52)

On taking the indicated integration in (52), the re-
sult is

I(E)=4%17 e-(h2/4)ro e'("I/Z““’EZ) P‘ En+t/2
n=0":

3 n+3 n+3 n+6
X[B<—) ) )IF).( 2 * 2 ; CE>

2 (1 5 n+5 n+6 \
+ §B(—, Z‘-;—) 1Fy (—2———, 5 s CE)} .
(53)

If the applied uniaxial stress is along the [100],
the local induced strains obey the conditions (41).

The expression for the absorption is then
HE)=n e-(x’f/z)ug o 08/ 4a'b)1~:an drTME (B —1)l/2
Xe °T cosh(o7'/?) [1+% (E-T)/7]. (54)
The integral in (54) is taken to give

o™
n=0 (272)

3 2n+3 2n+3
X[B( T ) 1F1( 5 s n+3; —cE>

/5 2m+1 2+ 1
+%B(%, s >1F1( =, n+3; -cE)].

(55)
The derivative of the absorption intensity as a
function of applied stress obtained from (53) and
(55) is shown in Figs. 5 and 6, respectively. The
values for the elastic constants and the intrinsic
parameters are the same as those used for Figs.
3 and 4.

I(E)=’r] e ().%/2)140 e O\ /4c¢'b)E n+2

1. DISCUSSION

From (4) and (31), the introduction of uniaxial
stress shifts each homogeneous ensemble of states
within the inhomogeneously broadened line to higher
energy. Thus, applied stress will in general, have
the effect of broadening an intrinsically strain-
broadened line associated with a non-Kramers
doublet. The effect for a |AM,| = 2 transition is
therefore a broadening to lower resonance field as
can be seen from Figs. 1-6.

For D;; local site symmetry, (16) gives an in-
crease in the transition probability under applied

EPR ABSORPTION DERIVATIVE FOR O, LOCAL SITE SYMMETRY

AND H'f I HO'UNlAXIAL STRESS IN [110]
20 T T T T T T T T T

ARBITRARY UNITS

-6 1 1 1 1 1 1 1 1 1

0O 02 04 06 08 0I0 o0l2 0l4 0i6 o0I18 020
E cm™

FIG. 5. EPR—absorptmn derivative for O, site sym-

metry and H,.f I HO with applied stress along the [110].
The intrinsic parameters are the same as those used
for Fig. 3. The first lobe of the derivative increases
with applied stress, the values of which are the same as
those given for Fig. 3.
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EPR ABSORPTION DERIVATIVE FOR Oy LOCAL SITE SYMMETRY
AND H Il Hy - UNIAXIAL STRESS IN [100]

10) | — T T T T T T T
8- .
61 4
2 4 7
z
=l
> 2 —
[ 4
<
£
g0
o
<
-4 .
-6 1 1 1 1 1 1 1 L 1
O 02 04 06 08 0 12 4 16 I8 20
E cm™
FIG. 6. EPR-absorption derivative for O, site sym-

metry and ﬁrf Il ﬁo with applied stress along the [100],
The intrinsic parameters are the same as those used
for Fig. 3. The first lobe of the derivative increases
with applied stress, the values of which are the same as
those given in Fig. 3.

stress for each ensemble of spins, each member

of which has a particular set of local strains {e;}
giving rise to the same value for A, The effect is
then an enhancement of the absorption intensity at
each point of the resonance absorption profile which
competes with the broadening due to the shift of the
energy levels in the inhomogeneous distribution dis-
cussed previously. The first exponential term in
(24) corresponds to the induced broadening due to
the applied stress. The terms in the summation,
with the exception of the first term, contribute to
the enhancement of the absorption intensity which
arises because of the increase inthe transition prob-
ability due to applied strain. The change in the
derivative of the absorption line shape is shown in
Fig. 1 for various values of the applied strain. Al-
though, the amplitude of the derivative shows a de-
cline as the applied stress is increased, the corre-
sponding absorption peak actually increases. The
main effect is a rather large shift of the peak of the
absorption to higher energy or, correspondingly,
lower magnetic field.

The effect of applied strain is quite different if the
local site symmetry is Cs, and if the site lacks full
inversion symmetry. In this case the transition
probability is determined by (27), which is to first
order, independent of the crystal field perturbations
caused by local strains. Therefore, from (4) we
expect a shift of the peak of the absorption as in the
previous case, but from (27) the integrated intensity
remains almost constant with applied strain. Fig-
ure 2 shows the derivative of (29) for various values
of the applied strain. The same values were used
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in this case for the intrinsic parameters and the
applied strain as were used in the previous case.
Thus, the results in Fig. 1 are contrasted with
those in Fig. 2, and the discrepancies are quite
marked. The main effect in this case is a spreading
out of the absorption without appreciable shift in the
peak until the amplitude is reduced about 80%.

For O, local site symmetry, the same general
arguments apply as were presented for the previous
cases. In this case, as in the previous ones, we
have considered a spin-1 formalism, *%'thus the ef-
fect of the mixing of the singlet into the states of the
doublet must be considered explicitly, and the effect
on the shift in the resonance frequency is given by
the term in A’ in (31) where A’ is given in terms of
the crystal field perturbations by (33). We, there-
fore, have a dependency of the absorption intensity
on the orientation of the rf magnetic field__ﬁr, with
respect to the applied dc field _ﬁo .

We have treated two cases: ﬁr,l ﬁo, -ITI,.f Il ﬁo-

In the first case, the square of the matrix element
governing the transition probability is given by (36).
If the uniaxial stress is applied in the [100], there
is no effect on the transition probability due to the
applied stress since (36) involves only shear com-
ponents of the local strains.'' Thus, the integrated
intensity remains constant with applied stress. We
expect, therefore, much the same effect as for C,,
symmetry shown in Fig. 2. Figure 3 shows the de-
rivative of (45) for various values of the applied
stress. It is seen that the general features are
quite similar to those shown in Fig. 2.

If the applied uniaxial stress is in the [110], the
transition probability will be enhanced for each spin
in the system and the integrated intensity will in-
crease. The derivative of Eq. (49) is shown in Fig.
4 for various values of the applied strain, and the
intrinsic parameters and applied strains are the
same as those used in Fig, 3. In this case the in-
crease in the integrated intensity is manifest in the
derivative primarily as a rather drastic increase in
the area of the first 1obe:.

For the case in which H, Il Hy, the square of the
matrix element which determines the transition prob-
ability is given by (50). The matrix element is
sensitive to both compressive and shear components
of the local strains; therefore, for applied uniaxial
stress in either the [110] or the [100] the integrated
intensity will increase as stress in applied. For the
former case, the derivative of (53) is shown in Fig.
5, and for the latter case the derivative of (55) is
shown in Fig. 6.

From (6) through (8), (34), (36) and (50), it is evi-
dent that the compressive strain components perpen-
dicular to the axis of quantization enter the expres-
sions entirely as the difference of one another, and
that the strain component along the axis of quantiza-
tion does not appear in any of the expressions.
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Thus, only local crystal field perturbations which
lower the symmetry will have an effect on the sep-
aration between the levels of the doublet and/or the
transition probability. In other words, hydrostatic
pressure will have no effect on the line shape to
second order. Thus, small perturbations on the
local crystal field symmetry are directly manifest
in terms of the effects on the absorption line shape.

IV. CONCLUSION

The model presented here offers a means for
studying the effect of intrinsic and induced perturba-
tions on the local crystal field symmetry for transi-
tions within a non-Kramers doublet for the three
cases of local crystal-field symmetry considered.
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Using uniaxial stress, the spin-lattice coupling pa-
rameters can be evaluated independently of the con-
centration of the impurity ion to the extent that the
impurity concentration is not so large as to affect
the shape of the absorption line.

The model is applicable to a variety of systems,
among them are MgO: Fe2+, 1 Al,04: Fea*, ? and
CaF,: U*.'3!* For the latter system, the model
has been compared quite favorably with the results
of uniaxial strain measurements. '*
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The use of a linear resonator instead of a microwave resonant cavity increases the sensi-

tivity of any resonance spectrometer when studying electron resonance in metals.

This

technique is used to study the temperature dependence of the line shape of the conduction-elec-
tron spin resonance in a lithium film for thicknesses ranging from 0.3 to 30 skin depths.
Dyson’s theory is found to apply at high temperatures. Deviations below 120 °K due to the
anomalous skin effect provide a method of determining the microwave surface impedance in

the alkali metals.

I. INTRODUCTION

In this paper we discuss a simple modification
of the conventional electron-spin-resonance (ESR)
technique for metals, which results in a sensitivity
gain of five times. We then use this technique to
verify Dyson’s! theory of the conduction-electron
spin resonance (CESR) line shape in lithium films
whose thicknesses range from 0. 3 to 30 skin depths.
Dyson’s theory has previously been verified® for

thick samples and for dispersions or powders whose
grain size is small compared to the skin depth.
Here we study a single film of uniform thickness.
Data were taken from 4. 2 °K to room temperature.
At low temperatures, the anomalous skin effect is
found to modify the line shape in an extremely sim-
ple manner.

The usual reflection technique for studying CESR
in metals is to place the sample in a cavity which is
critically coupled to one arm of a microwave bridge.



